
1

Reputation in Privacy Enhancing TReputation in Privacy Enhancing TReputation in Privacy Enhancing TReputation in Privacy Enhancing TReputation in Privacy Enhancing Technologiesechnologiesechnologiesechnologiesechnologies

Roger Dingledine, Nick Mathewson, andRoger Dingledine, Nick Mathewson, andRoger Dingledine, Nick Mathewson, andRoger Dingledine, Nick Mathewson, andRoger Dingledine, Nick Mathewson, and Paul SyversonPaul SyversonPaul SyversonPaul SyversonPaul Syverson

Reputation Technologies, Inc. Naval Research Laboratory

Reputation is the linchpin of a dynamic and pseudonymous future. In a networked world where
individuals interact via anonymous remailers, and where the online services they use are themselves
provided by an ever-changing pool of semi-anonymous users, the distinction between pseudonym and
identity blurs. In this world, reputation is one of the few tools that can still provide trust — trust among
the users of distributed services, and even the trust necessary to maintain reliability and accountability
of these services.

In its most general form, reputation is memory about past performance. This memory can be
localized and idiosyncratic, as in the case of users that remember which servers have worked well in the
past; centralized and shared, as in the case of an auction site that tracks customer satisfaction of various
vendors; distributed and shared, as in the case of servers that vote one another into different reliability
categories; or even implicit within the structure of the system itself, as in the case of systems that
embody trust as microcurrency that reliable systems tend to accumulate.

While reputation might superficially seem inimical to privacy concerns, systems with explicit
reputation can actually enable privacy by controlling the flow of information about pseudonymous
individuals, and reducing the demand for out-of-line information exposure.

As with security, it is tempting but incorrect to think that reputation is a simple matter of bolting
an extra service to the side of an existing system. This point is illustrated by two reputation systems that
have been designed for use in remailer networks.

An Example: Remailer NetworksAn Example: Remailer NetworksAn Example: Remailer NetworksAn Example: Remailer NetworksAn Example: Remailer Networks

Remailer networks allow people to send and receive mail while protecting their identities. Today’s
remailer networks use a handful of long-lived, static servers with fairly uniform reliability. Currently
deployed reputation systems send periodic test messages through each remailer to determine which are

Copyright is held by the author/owner.

green
Text Box
NRL Release Number 02-1221.1-0440

2

currently working. This “pinging” approach works well enough for a small static list of servers. How-
ever, a network that is made of a small static set of remailers is potentially vulnerable to a well-funded
adversary in a variety of ways, e.g., denial of service or remailer compromise. Any solution based only
on hardening the nodes runs contrary to the basic premise of remailers that trust is distributed rather
than mutually assured. Thus, to better resist a well-funded adversary, the remailer network must grow
so it has enough nodes to properly distribute trust. Pinging for reputation breaks down in an environ-
ment where the network is made up of many transient volunteer nodes. On the other hand, an adversary
might render a growing, dynamic network useless by volunteering a flood of unreliable remailers, or it
might manipulate the reputation system to improve the standing of remailers it owns.

The first design, presented in [1], describes a reputation system for improving remailer reliability.
Remailer reputation is based on both positive and negative performance. It is not enough to just keep
track of failures, because new unreliable remailers would be rated the same or better than remailers that
consistently perform well. In this design, each remailer in the message’s path passes back a receipt to
the one behind it. Senders can successively query for receipts to determine which remailer to blame for
delivery failure. However, a remailer might refuse to provide a receipt for a particular message either
because it failed to send the message, or because it was unable to obtain a receipt from the next hop. We
solve the problem of pinpointing failures by introducing a set of weakly trusted global witnesses. These
witnesses are contacted when the next hop in the path refuses the message, allowing a remailer to prove
that it made a best-effort delivery attempt. Senders can also tell witnesses about remailers that silently
dropped messages (meaning they got a copy but did not attempt to pass it on). These witnesses verify
and tally failures, and also send their own test messages to distinguish reliable remailers from new ones
that have not yet been tested. Reputations are tabulated and made available to client software, which
can use them to choose reliable remailers for sending anonymous mail.

This reputation system attempts to improve reliability in a long-term sense, rather than giving
provable delivery guarantees for each message. On the other hand, it still relies both on proofs of
correct behavior to establish reputations, and trusted witnesses to determine and keep track of them.
The reputation system in [3] does away with trusted witnesses and proofs in favor of self-rating groups
of remailers. Remailers are arranged in cascades (fixed-order routes of determinate length). New cas-
cades are formed at a regular interval, e.g., one day, and the formation of cascades is based on a com-
munally generated random value so that no set of collaborating remailers can predict which remailer
will be in which cascade, as long as at least one of them is honest. Remailers send test messages
through their own cascades and can also receive evidence of failure from client senders. Rather than
depending on proofs of remailer performance, a cascade fails when and only when some member of
that cascade has declared it to have failed. All members of cascades that do not fail during an interval
increase in reputation; all members of cascades that fail decrease. To make it harder for the head remailer
of a cascade to undetectably fail or fail selectively, each of the cascade members is responsible for a
portion of the messages that go through a cascade in each batch. In effect, each member is the head for
some of the messages. Similarly, the tail of the cascade sends each message in a batch to each of the
other cascade members rather than just directly to the recipient. All then attempt to deliver the message
to the recipient. (Efficiency of communication for final delivery can be improved by using receipts
when that is feasible.)

In both systems just described, it was necessary to redesign the remailer protocol so we could
track remailer behavior. In the first case, we added receipts for each delivery to each remailer and to the
ultimate destination, and we added trusted witnesses to verify delivery and record success or failure. In
the second case, we used the usual remailer cascade protocol for messages inside the cascade, but we

3

introduced a new protocol for sending messages into the cascade and delivering messages from the
cascade.

An Example: Anonymous PublishingAn Example: Anonymous PublishingAn Example: Anonymous PublishingAn Example: Anonymous PublishingAn Example: Anonymous Publishing

Free Haven [2] describes a design for a publishing system that can resist the attempts of powerful
adversaries to find or destroy any stored data. It provides anonymity for readers and publishers, and
pseudonymity (privacy and deniability) for the servers that store and serve the documents. Unlike
related designs such as Freenet, the publisher of a document — not the servers holding the document —
determines its lifetime. To counter malicious or flaky servers, publishers break documents up into
shares, any adequately sized subset of which is sufficient to reconstruct the document. Servers then
trade these shares around, allowing for servers to join and leave smoothly and also providing a moving
target for an adversary hunting a particular share.

 To prevent selfish or malicious users from filling up the available disk space, all who would
publish must also provide servers, and servers form contracts to store each other’s material for a certain
period of time. Because servers can cheat and drop data early, Free Haven employs a reputation system
to limit the damage done by servers that misbehave. Successfully fulfilling a contract increases a server’s
reputation and thus its ability to store some of its own data on other servers. This gives an incentive for
each server to behave well — that is, as long as cheating servers can be identified.

In such a dynamic and anonymous environment, it is very difficult to reliably notice if a server
drops data early. We might give the original publisher the task of monitoring the availability of his
documents; he can then broadcast a claim that a particular document has been dropped early. If we
don’t want to rely on the original publisher, we can assign a random server as a “shepherd” for a
document. Or for a more dynamic solution, we can use a “buddy system”, where publishers put in two
copies of each share, and the copies watch each other and broadcast a complaint if either disappears.

Anyone wishing to claim misbehavior can present a signed contract as an indication the file should
have been kept, but there are a number of special cases where a signed contract is not sufficient proof to
pinpoint a particular server as the culprit, such as if the server traded the share away before the contract
expired. Because a claim cannot be taken as absolute proof, servers are left with the grim task of trying
to determine the credibility of the claimer: if two or more servers disagree, onlookers need a way to
determine which to believe. Keeping track of all claims ever made and tracking their results might give
a server enough information to make reasonable guesses about the validity of each claim. This ap-
proach gets complex very quickly, and leaves lots of holes for a smart adversary.

Providing a way to verify claims in Free Haven remains an open problem. Given our experience
designing the remailer reputation systems above, it seems most promising to redesign the entire system
from the ground up, this time with verifiable claims in mind. Designing the original system without a
clear idea of the reputation requirements made Free Haven’s design significantly more complex and
brittle.

It’s tempting to scale down the reputation system instead. That is, servers use only local informa-
tion from their own transactions and trades. In this scenario, a new server must separately convince
each server it encounters that it is reputable before that server will allow it to publish any data. Because
news about good and bad behavior does not propagate, servers must be more conservative about offer-
ing resources to unfamiliar nodes. To prevent stabilization into a static network with a small number of
nodes trading data among each other and ignoring newcomers, many servers must explicitly risk re-

4

sources on new nodes. Rather than the global gossip system where the whole world learns from a
server’s first interaction, now each new server has a chance to waste the time and resources of every
other server (the “screw every server once” attack).

Perhaps the most interesting point of Free Haven reputations is that servers use their reputation
capital to obtain proportional resources from other servers. In order to build up to a reputation that
allows a server to store a certain amount in the system (think of it like a credit limit), the server must
previously have successfully stored that same size of other documents. Each server is able to commit at
most his current credit limit in new contracts, and successfully completing a contract raises his credit
limit. Because a server can cheat on at most the amount of useful work he has already done, each server
is forced to perform at least 50% useful work. We will say more about this notion of “spending” repu-
tation and quantifying risk below.

Reputation and AnonymityReputation and AnonymityReputation and AnonymityReputation and AnonymityReputation and Anonymity

Although the examples described above associate non-transferable reputation with long-lived nyms,
there are many ways to vary this formula. (Think of a nym as a name.) Entities may be anonymous or
have only short-lived names; reputations may be short-lived or transferable; and bindings between
nyms, entities, and reputations may be varied.

We have already noted that in Free Haven, a server can both acquire and spend reputation. A
central register or registers can keep track of each server’s current reputation credit level, or each server
can maintain its own view of the system. It is a small step from here to consider systems in which
reputation can be paid in the form of coins or tokens. With such a system, the same entity can maintain
reputation even while changing nyms. An entity that holds different nyms in different contexts can
benefit from this feature — either to preserve reputation independent of private authentication key
compromise, or to maintain perfect forward anonymity (future compromises linking a nym to an entity
will not reveal previous transactions by the entity bearing that nym, even if all past behavior under all
nyms is logged [4]).

Along with the advantages of fungible reputation come some potential problems. For example, an
entity can obtain reputation in one context where it has functioned well and spend it in another context
where it has not. Or the entity can transfer reputation to another entity entirely. This capability might be
controlled by using cryptographic techniques that, e.g., bind all the reputation to the same nym or the
same entity without revealing which nym (or entity) that is. But there are other concerns for this
approach. For example, how do you diminish reputations for bad performance in such a model? (If it
is possible to bind reputation tokens to an entity in an anonymity preserving way, it may also be pos-
sible to bind them to a duration so that the amount of reputation can be evaluated with respect to the
time that the reputation bearer has existed. Thus we can distinguish longstanding, low-performing
entities from untested ones.)

On the hand, in some contexts transferable reputation may not be a problem. For example, in a
system like Free Haven that “pays” you for good performance with system services from others, as long
as the amount of service credit taken from the system is no more than the amount of service provided to
it, does it matter if that credit is transferred to others?

5

Conclusion: New Directions, Misdirections, and Other QuestionsConclusion: New Directions, Misdirections, and Other QuestionsConclusion: New Directions, Misdirections, and Other QuestionsConclusion: New Directions, Misdirections, and Other QuestionsConclusion: New Directions, Misdirections, and Other Questions

Reputation systems are already gathering momentum at the grassroots of the Internet. Special-
purpose systems — some more ad hoc than others — have already been rolled into online auction
services, messaging protocols, and online discussion sites. But despite this growing body of experience
at building simple reputation systems and designing complex ones, the questions remain as intriguing
as the solutions.

How can we fine-tune a reputation system in response to a specific threat model? In a relatively
low-threat environment (e.g., tracking ISP uptime), ordinary statistical models will suffice. But most
statistical models assume that data is biased at worst, not maliciously chosen by an adversary who
wants us to make a particular decision. At this point, the emphasis in current research shifts from
predicting behavior to minimizing risk. Is it really necessary to abandon statistical rigor? The field of
machine learning has a rich history and a lot of experience at solving related problems. Is there some
way to adapt these solutions to an adversarial context?

Similarly, what can we do when statements aren’t verifiable, and where an adversary can either lie
about real interactions, or fabricate spurious interactions and lie about those? We could try to make
credibility charts and weight statements by credibility — but a smart adversary could try to trick our
credibility calculations as well. If somebody finds a way to establish bounds on malicious influence on
such a system, the range of problems we can solve with reputation would explode overnight.

We have already seen how reputation can enhance privacy. Can we go one step farther, and assign
reputation based on an expectation of protecting privacy? In distributed privacy systems, the privacy
provided is typically based on an assumption that some subset of system components will both perform
duties correctly and will not reveal some parts of their data and/or operations. A privacy destroying
adversary might offer very reliable service while using information from various compromised system
elements to compromise privacy. Can we say anything meaningful about reputations based on reliabil-
ity at keeping secrets, or are we limited to making statements about the probability of privacy compro-
mise given the likelihood and structure of component compromise? Would knowledge of such reputa-
tion help us design more reliable privacy systems?

What if we treat reputation as currency? Currency implies economics. How do you get reputation
currency? Do currency-based approaches always imply transitive trust? Is the supply of reputation
currency constant, increasing, or decreasing? Does it expire, or slowly lose value over time? Where,
ultimately, does a currency come from — a decentralized Federal Reserve? Does it materialize as a
side-effect of performing work from the system? Is there credit? Or does currency only appear when the
system is bootstrapped, and if so, how? Is currency global, or do individual servers mint their own
currencies? Can we evolve a viable market that is scalable based on these local currencies issued by
individual servers? Can a global currency be bootstrapped from local currencies?

The number and diversity of real-world reputation systems is staggering. Through a byzantine
mass of credit reports, product reviews, earnings statements, flat-out gossip, and a thousand other
information channels, we try to convince one another of our honesty and competence. In the process we
expose far more detail about ourselves than we might wish. Online reputation systems promise to be
still more complex and difficult to build than their real-world analogues, but they hold out the promise
of enabling decentralized interaction and protecting privacy in ways that today’s systems of trust can-
not.

6

FootnotesFootnotesFootnotesFootnotesFootnotes

[1] R. Dingledine, M.J. Freedman, D. Hopwood, and D. Molnar. “A Reputation System to In-
crease MIX-Net Reliability”, Information Hiding, 4th International Workshop, I.S. Moskowitz (ed.),
Springer-Verlag, LNCS 2137, April 2001.

[2] R. Dingledine, M.J. Freedman, and D. Molnar. “The Free Haven Project: Distributed Anony-
mous Storage Service”, Designing Privacy Enhancing Technologies: International Workshop on De-
sign Issues in Anonymity and Unobservability, H. Federrath (ed.), Springer-Verlag, LNCS 2009, July
2000.

[3] R. Dingledine and P. Syverson. “Reliable MIX Cascade Networks through Reputation”, Fi-
nancial Cryptography, 6th International Conference, M. Blaze (ed.), Springer-Verlag, LNCS, March
2002.

[4] P. Syverson, S. Stubblebine, and D. Goldschlag. “Unlinkable Serial Transactions”, Financial
Cryptography, 1st International Conference, R. Hirschfeld (ed.), Springer-Verlag, LNCS 1318, Febru-
ary 1997.

